Fractional colorings of cubic graphs with large girth

نویسندگان

  • Frantisek Kardos
  • Daniel Král
  • Jan Volec
چکیده

We show that every (sub)cubic n-vertex graph with sufficiently large girth has fractional chromatic number at most 2.2978 which implies that it contains an independent set of size at least 0.4352n. Our bound on the independence number is valid to random cubic graphs as well as it improves existing lower bounds on the maximum cut in cubic graphs with large girth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two related questions on total coloring of cubic graphs

By proposing two questions on total colorings of cubic graphs of large girth, we investigate a possible connection between girth and total chromatic parameters in cubic graphs.

متن کامل

Circular edge-colorings of cubic graphs with girth six

We show that the circular chromatic index of a (sub)cubic graph with girth at least six is at most 7/2.

متن کامل

Maximum edge-cuts in cubic graphs with large girth and in random cubic graphs

We show that for every cubic graph G with sufficiently large girth there exists a probability distribution on edge-cuts of G such that each edge is in a randomly chosen cut with probability at least 0.88672. This implies that G contains an edge-cut of size at least 1.33008n, where n is the number of vertices of G, and has fractional cut covering number at most 1.12776. The lower bound on the si...

متن کامل

Coloring with no 2-Colored P4's

A proper coloring of the vertices of a graph is called a star coloring if every two color classes induce a star forest. Star colorings are a strengthening of acyclic colorings, i.e., proper colorings in which every two color classes induce a forest. We show that every acyclic k-coloring can be refined to a star coloring with at most (2k2 − k) colors. Similarly, we prove that planar graphs have ...

متن کامل

Fractional, Circular, and Defective Coloring of Series-Parallel Graphs

In this note we consider colorings of series-parallel graphs. Specifically, we provide bounds on their fractional and circular chromatic numbers and the defective version of these parameters. The main result is that the fractional chromatic number of any series-parallel graph of odd girth k is exactly 2k/(k − 1).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2011